Direkt zum Inhalt

26 Oktober 2020 Pressestelle, Corporate Communications Center, TUM

Caroline Gutjahr, Professorin für Pflanzengenetik an der TUM School of Life Sciences Weihenstephan iim Labor bei den Versuchen in der Klimakammer. U. Benz / TUM

Prof. Caroline Gutjahr U. Benz / TUM

Die dynamische Änderung des Wurzelwachstums von Pflanzen ist wichtig für ihre Anpassung an Bodenbedingungen. Nährstoffe oder Feuchtigkeit können je nach Standort in höheren oder tieferen Bodenschichten vorkommen. Daher ist je nach Situation eine kurze oder eine lange Wurzel vorteilhaft. Caroline Gutjahr, Professorin für Pflanzengenetik an der Technischen Universität München (TUM), erforscht mit ihrem Team, wie Pflanzenhormone das Wachstum der Wurzeln beeinflussen.

Wurzeln sind essentiell für die Aufnahme von Wasser und Nährstoffen, für die Verankerung im Boden aber auch für die Interaktion und Kommunikation mit Bodenmikroorganismen. Eine lange Wurzel ermöglicht zum Beispiel bei Trockenheit an tiefere, feuchtere Bodenschichten zu gelangen. Eine flachere Wurzel mit vielen Wurzelhaaren ist gut für die Phosphataufnahme, da Phosphat meistens in den oberen Bodenschichten zu finden ist.

Caroline Gutjahr, Professorin für Pflanzengenetik an der TUM School of Life Sciences in Weihenstephan, und ihr Team fanden neue Kommunikationswege von Hormonen, die das Wachstum von Pflanzenwurzeln beeinflussen.

Warum manche Pflanzenwurzeln lange und andere kurze Haare haben

„Es hat sich gezeigt, dass das Protein SMAX1 die Produktion von Ethylen bremst“, sagt Caroline Gutjahr. Ethylen ist ein Pflanzenhormon und gilt als Auslöser oder Beschleuniger der Reifung zahlreicher Früchte und Gemüse, doch es kann auch noch andere Vorgänge in Pflanzen auslösen. Wenn weniger des gasförmigen Hormons in der Pflanze erzeugt wird, regt dies die Pflanze dazu an, lange Wurzeln und kurze Wurzelhaare wachsen zu lassen.

Die Bremse SMAX1 kann gelöst werden, wenn der sogenannte Karrikin-Signalweg, aktiviert wird, wodurch ein weiteres Hormon ins Spiel kommt. Dadurch wird die Herstellung von Ethylen angeschaltet, was dazu führt, dass die Wurzeln kurz bleiben und die Wurzelhaare in die Länge wachsen.

Damit ist es Wissenschaftlerinnen und Wissenschaftlern erstmals gelungen, die molekularen Vorgänge, die durch den Karrikin-Signalweg angeschaltet werden, nachzuvollziehen und zu zeigen, durch welche molekularen Mechanismen dieser Signalweg Entwicklungsprozesse in Pflanzen reguliert.

Diversität der Pflanzen zeigt sich auch in molekularen Mechanismen

„Überraschenderweise hat dieser Mechanismus einen enormen Einfluss auf die Wurzeln des Hülsenfrüchtlers Lotus japonicus, der Modellpflanze für Erbsen, Bohnen und Linsen, an der wir unsere Studie durchführten“, sagt Gutjahr.

Einen viel schwächeren Einfluss hingegen beobachtete das Forschungsteam bei den Wurzeln einer anderen Modellpflanze, der Arabidopsis thaliana oder Ackerschmalwand, die mit den Kohlgewächsen verwandt ist.

„Das zeigt, dass die Diversität der Pflanzen sich nicht nur im Aussehen widerspiegelt, sondern auch in der Wirkung ihrer molekularen Schaltmechanismen auf das Wachstum“, folgert die Forscherin.

Verbesserung des Wurzelwachstums relevant für landwirtschaftliche Züchtungen

„Wenn wir genauer verstehen, wie Wurzelwachstum auf molekularer Ebene und in Abstimmung mit Umweltreizen reguliert wird, können wir Pflanzen für die Landwirtschaft züchten, welche besser mit ungünstigen Umweltbedingungen zurechtkommen und damit auch unter diesen ungünstigen Bedingungen Ertrag bringen“, sagt die Wissenschaftlerin.

Daher erforscht ihre Arbeitsgruppe nun, wie die identifizierten Hormonsignalwege (Karrikin- und Ethylen-Signalweg) auf unterschiedliche Umweltbedingungen reagieren. Damit möchten sie herausfinden, wie diese beiden Signalwege gemeinsam mit den Fühlern zusammenarbeiten, mit denen eine Pflanze verschiedene Umwelteinflüsse wahrnimmt. Dann können sie das Wurzelwachstum an diese Umweltbedingungen so anpassen, dass es für die Pflanze möglichst gewinnbringend ist.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Caroline Gutjahr
Professur für Pflanzengenetik
TUM School of Life Sciences
Technische Universität München
Emil Ramann Str. 4
85354 Freising-Weihenstephan

Tel.: +49 8161 71 2680

E-Mail: caroline.gutjahr[at]tum.de

Originalpublikation:

Carbonnel, S., Das, D., Varshney, K., Kolodziej, M.C., Villaécija-Aguilar, J.A., Gutjahr, C. (2020): The karrikin signaling regulator SMAX1 controls Lotus japonicus root and root hair development by suppressing ethylene biosynthesis. In: PNAS, 117: 21757-21765.

www.pnas.org/content/117/35/21757

Back to top Icon

This website uses cookies and the Matomo web analysis tool. By continuing to browse you agree to our use of cookies. Change your settings here. More information.