A residential area in the Belgian city of Ghent, a university campus in Poznan, Poland, a hospital in Milan: at these three locations, the EU project RENergetic is investigating how citizen energy can be successful. The University of Passau is contributing expertise on artificial intelligence and sustainability.
A team led by Technical University of Munich (TUM) physicists Christoph Utschick and Prof. Rudolf Gross has succeeded in making a coil with superconducting wires capable of transmitting power on the order of more than five kilowatts contactless and with only small losses. The wide range of conceivable applications include autonomous industrial robots, medical equipment, vehicles and even aircraft.
Lithium-ion batteries are currently the most important category of electrical energy storage device. Their operational safety depends crucially on separators that ensure the spatial separation of the electrodes. With the aim of further increasing the safety of high-tech batteries, and at the same time extending their service life, the University of Bayreuth is set to develop novel separators made of glass together with renowned industrial partners. The joint project "Glass separators for lithium-ion batteries (GlasSeLIB)" will start on March 1, 2021 and will be funded by the Bavarian Research Foundation to the tune of more than € 375,000 over the next three years.
In our smartphones, our computers and in our electric cars: We use rechargeable lithium-ion batteries everywhere. But their capacity drops after a while. Now a German-American research team has investigated the structure and functionality of these batteries using neutron diffraction: They discovered that the electrolyte fluid's decomposition products capture mobile lithium in the battery and that the distribution of lithium within the cell is surprisingly uneven.
New EU project “Hyflow” to develop a smart hybrid energy storage system
A project at Landshut University of Applied Sciences is developing a control system for electricity storage in order to reduce power grid losses and support the energy transition.
A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries.
The ProZell Competence Cluster presents the key results of the first funding phase of BMBF-funded projects; Landshut University of Applied Sciences is represented with the LocoTroP project.
Organic solar cells are cheaper to produce and more flexible than their counterparts made of crystalline silicon, but do not offer the same level of efficiency or stability. During his doctoral thesis, Andrej Classen, who is a young researcher at FAU, demonstrated that increases in efficiency can be achieved using luminescent acceptor molecules.
Modern hydroelectric power plants do not always protect fish better than conventional ones. In addition to the technologies employed, the specific location of the plant and the fish species being present at that location also play a role in fish protection. A research team at the Technical University of Munich (TUM) has systematically studied how different types of power plants affect various fish species and their habitats. Detailed findings can improve future planning as well as retrofitting of existing plants.
This website uses cookies and the Matomo web analysis tool. By continuing to browse you agree to our use of cookies. Change your settings here. More information.