They call it the "magic angle." If an experiment slightly shifts two layers of graphene relative to each other, the carbon material—surprisingly—becomes superconductive. With this trick, scientists such as LMU researcher Dmitri Efetov have opened the door to a new realm of physics.
The Würzburg-Dresden Cluster of Excellence ct.qmat opens up new fields of research in quantum materials and designs tailor-made materials for the high-tech of tomorrow. This collaboration offers outstanding opportunities to work on global future topics in an internationally-networked scientific community.
Metrology, computing, communications: quantum research in Erlangen has a broad base. The team of researchers at FAU and the nearby Max Planck Institutes is also at the forefront of international advances in quantum imaging, quantum computing, and encryption.
Early-career researchers at MCQST are conducting cutting-edge research in quantum science and technology. The START fellowship program supports them to develop their own projects and take steps toward building an independent career.
Rupert Huber’s experimental work in terahertz and solid-state physics at the interface of optics and electronics is internationally renowned. His fundamental research is used in ultrafast atomic-resolution microscopes and quantum information processing.
Monika Aidelsburger elucidates the nature of many-body quantum phenomena. Her ERC Starting Grant has been topped up by an LMU Tenure-Track Professorship to pursue this work.
At JMU Würzburg, Professor Laurens W. Molenkamp and his team are conducting pioneering work on topological materials. With its cutting-edge technology, the new Institute for Topological Insulators will be the ideal place for them to develop this research.
The Free State of Bavaria is funding a new research project on quantum sensors with three million euros. Among other things, it aims to further improve molecular and medical imaging.
In recognition of our outstanding expertise in quantum research: a consortium consisting of eleven researchers from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) will receive roughly three million euros in funding by 2025. The new lighthouse project Quantum Measurement and Control for the Enablement of Quantum Computing and Quantum Sensing (QuMeCo) will ignite basic research into quantum computing, sensing and imaging, combining physics and electrical engineering in new ways in the field of light and matter.
Researchers at the Universities of Bayreuth and Linköping have produced two surprising compounds of nitrogen and the rare earth metal yttrium under very high pressure. The new polynitrides contain ring- and spiral-shaped crystal structures of nitrogen that have never before been observed in experiments or predicted in theoretical calculations. They look similar to widespread structures of carbon compounds. The high-pressure syntheses described in the journal "Angewandte Chemie" show: The diversity of possible nitrogen compounds and their structures is far greater than the behavior of nitrogen atoms under normal conditions would suggest.
This website uses cookies and the Matomo web analysis tool. By continuing to browse you agree to our use of cookies. Change your settings here. More information.